In vitro disease modeling of Parkinson's disease

Jens C. Schwamborn jens.schwamborn@uni.lu Luxembourg Centre for Systems Biomedicine

Utilization of the iPSC technology to generate NSCs and neurons

ATP13A2

Pink1/Parkin

Specification of regional identity

Broccoli et al., 2014

Derivation of neuroepithelial stem cells (NESCs)

1 day post-plating

4 days post-plating

Reinhardt et al., 2013

NESCs express early neural markers

Reinhardt et al., 2013

DNs for in vitro Parkinson's disease modelling

N2 medium only s apoptotic H+ ucrus vs. N2 medium only 5 μM 6-OHDA 100 nM Rotenone 150 100 100 nM Rotenone

Reinhardt et al., 2013

Autophagy sensors

20 um

Autophagy phenotypes in PD cell models

Modulation of pathways

Activation of Phagophores

Total=45410

Phagophores

Autophagosomes

- 14d differentiation starting from NESCs
- Treatment with LRRK2 inhibitor* for 12 days.
- Comparison of an engineered line to a patient line.

* Inhibitor from Ramsden et al. (2011) in ACS Chem Biol

Advanced 3D models

- More complex & 3D, closer to in vivo situation
- Stem cells exhibit an intrinsic ability to assemble into complex structures
- Mimic the natural environment as closely as possible to improve growth conditions

Human neuroepithelial stem cells (NESCs) for starting 3D cultures

Differentiation into dopaminergic neurons

400 um

Moreno et al., 2015

Development of a full Pipeline from cell culture to feature analysis

Perkin Elmer Opera HCS System

LRRK2-G2019S driven cell death in 3D

6 weeks culture

Reduced neurite complexity in 3D

2 weeks 6 weeks

Mitochondrial phenotypes are preceding

Mito tracker green Smaller nuclei

(Partial) rescue via LRRK2 inhibitor treatment

Inh2, Ramsden et al., $2011, 0.5 \mu m$

Gene-correction vs. drug treatment

Genetic background vs. genotype

Increasing complexity with organoid systems

- Spatial organisation of heterogeneous tissue-specific cells
- Cell-cell interactions, cell-ECM interactions
- Physiological functions generated by tissue-specific cells
- Stable system amenable to extended cultivation and manipulation
- Patient-specific
- Reproducible

Generation of Midbrain Organoids: Dynamic Condition

Approach based on Lancaster et al., 2013, Nature

Generation of midbrain organoids

hiPSCs

Transfer to Matrigel droplets

Orbital shaker

In 10 cm dish or 96 well plate

Derivation of more ventralized organoids

Smits et al., submitted

Dopaminergic activity in ventralized organoids

A9 / A10 dopaminergic neurons

Other neurons

Synapse formation

Microelectrode Array (MEA)

Grid of microelectrodes to capture electrophysiological data from multiple cells simultaneously

Cellular network communication

Millifluidics technology for midbrain organoid generation

TH/FOXA2/

TUJ1/Hoechst

500 um

Toxicology in midbrain organoids

Pipeline for phenotyping in organoids

PD: Reduction in the amount of dopaminergic neurons

PD patient: LRRK2-G2019S

PD: Reduced complexity of dopaminergic neurons

PD patient: LRRK2-G2019S

Clustering by PD vs. Healthy

1) Differentiation of complex 3D neuronal networks in microfluidics plates.

- Strong PD specific phenotype neuronal degeneration
- Rescue of phenotype with gene-correction or drug treatment

2) Generation & characterization of midbrain organoids.

- Neuronal differentiation
 - Functionality: synapses, neuronal activity, Dopamine
- Astroglia differentiation
- Oligodendrocyte differentiation & myelination
- Neuromelanin production
- Disease relevant phenotypes

Acknowledgements

Collaborations:

Rejko Krueger (Luxembourg) Jared Sterneckert (Dresden) Arti Ahluwalia (Pisa) Peter Ertl (Vienna) Andrew Hicks (Bozen)

Fonds National de la Recherche Luxembourg

Midbrain identity

Ca2+ Imaging in Organoids

Ca2+ Imaging in Organoids

Dopamine production

Astrocyte differentiation

Oligodendrocyte differentiation

Neuromelanin detection, Fontana Masson staining

Device Microfabrication & Organoid cultivation

protein aggregation, dopamine production etc.

Midbrain organoids with the LRRK2-G2019S mutation show disease relevant phenotypes

Smits et al., in revision

Toxicology in midbrain organoids

Mitochondrial morphology

Other features: Mitochondrial mass, ROS production, membrane potential (TMRM), mitophagy

- 14d differentiation starting from NESCs
- Treatment with LRRK2 inhibitor* for 12 days.
- Comparison of an engineered line to a patient line.

* Inhibitor from Ramsden et al. (2011) in ACS Chem Biol

Human neuroepithelial stem cells (NESCs) for starting 3D cultures

2) Rescue with dugs

Differentiation into dopaminergic neurons

400 um

Moreno et al., 2015

Parkinson's disease phenotypes

Dopaminergic Neurons Astrocytes

Bolognin et al., unpublished; patent filed

Rescue of phenotypes

Tuj l Hoechst

Inhibitor from Ramsden et al. (2011) in ACS Chem Biol

Bolognin et al., unpublished; patent filed

Analysis with high-content imaging

Perkin Elmer Opera HCS System

Automated image acquisition and analysis

Fate specification and spatial organization

Monzel et al., 2017; patent filed